ارائه مدل اندازه‌گیری عملکرد مدیریت دانش (مورد مطالعه: یک سازمان دفاعی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مدیریت صنعتی، گروه مدیریت، دانشکده علوم انسانی، دانشگاه آزاد اسلامی واحد همدان، ایران، نویسنده مسئول؛

2 کارشناسی ارشد مدیریت بازرگانی، گروه مدیریت، دانشکده علوم انسانی، دانشگاه پیام نور واحد تهران، ایران.

3 دانشجوی دکتری مهندسی صنایع، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه آزاد اسلامی واحد تهران شمال، ایران.

4 دانشجوی دکتری مهندسی صنایع، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه آزاد اسلامی واحد تهران مرکزی، ایران.

چکیده

امروزه دانش به‌عنوان یک منبع رقابتی و قدرت نظامی برای صنایع دفاعی است و یکی از مهم‌ترین نیازهای سازمان­های دفاعی برای حفظ امنیت ملی در کشور و دفاع از مرزها، داشتن یک مدل اندازه­گیری عملکرد مدیریت دانش است. هدف این مطالعه، ارائه مدل اندازه­گیری عملکرد مدیریت دانش در یکی از سازمان­های دفاعی است. بر اساس مطالعه عمیق تحقیقات گذشته و جرح و تعدیل نظرهای کارشناسان دفاعی، شاخص­های مربوط به اندازه­گیری عملکرد مدیریت دانش استخراج شدند و سپس سازه‌های مدل پیشنهادی با استفاده از تکنیک­های تحلیل عاملی اکتشافی و تحلیل عاملی تأییدی تعیین شدند. در نهایت روابط علّی سازه­های مدل تحقیق با استفاده از تکنیک مدل‌سازی معادلات ساختاری بررسی شدند. یافته­ها نشان دادند که چهار معیار اصلی به نام­های «کیفیت دانش»، «مطلوبیت دانش»، «نوآوری دانش» و «نتایج دفاعی» شناسایی و تأیید شدند. همچنین روابط علّی بین معیارهای مدل معنادار هستند. این مطالعه می­تواند ادبیات مربوط به اندازه­گیری عملکرد مدیریت دانش در سازمان­های دفاعی را توسعه دهد. سیاست‌گذاران و مدیران ارشد سازمان­های دفاعی می­توانند از نتایج این مطالعه به‌منظور ارزیابی عملکرد مدیریت دانش و ارتقاء بهره‌وری پروژه­های دفاعی استفاده کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting a Model for Knowledge Management Performance Measurement (Case Study: A Defensive Organization)

نویسندگان [English]

  • Behzad Ghasemi 1
  • Masoud Hoseinzadeh 2
  • Ebrahim Mohammadipirlar 3
  • Fatemeh Shamshiri 4
1 Ph.D. in Industrial Management, Department of Management, College of Humanities, Hamedan Branch, Islamic Azad University, Hamedan, Iran. responsible author
2 Master of Business Administration, Department of Management, College of Humanities, Tehran Branch, Payam Noor University, Tehran, Iran
3 Ph.D. student in Industrial Engineering, Department of Industrial Engineering, Faculty of Industrial Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
4 Ph.D. student in Industrial Engineering, Department of Industrial Engineering, Faculty of Industrial Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Today, knowledge is a competitive source and military power for the defense industry and one of the most important needs of defensive organizations to maintain national security in the country and defend borders is to have a Knowledge Management (KM) performance measurement model. The purpose of this study is to provide a causal model for measuring KM performance in one of the defensive organizations. Based on an in-depth review of previous studies and adjustment of defensive experts' opinions, indicators related to measuring the KM performance were extracted, and then, the constructions of the proposed model were determined using exploratory factor analysis and confirmatory factor analysis techniques. Finally, the causal relationships of the research model constructs were investigated using the structural equation modeling technique. The findings revealed that the four main criteria were identified and verified, namely "knowledge quality", "knowledge utility", "knowledge innovation" and "defensive results". Causal relationships between model criteria are also significant. This study could develop literature on KM performance measurement in defensive organizations. The obtained results could be utilized by policymakers and senior managers of defensive organizations to evaluate KM performance and improve the productivity of defensive projects.

کلیدواژه‌ها [English]

  • Knowledge Management
  • Knowledge Management Performance Measurement
  • Structural Equation Modeling
  • Defensive Organization
  • الف. منابع فارسی

    • اخوان، پیمان و کشتکار، مهران، (1394)، بررسی و رتبه‌بندی توانمندسازهای مدیریت دانش مطالعه موردی: سامانه فرماندهی و واپایش یک سازمان دفاعی، فصلنامه علمی راهبرد دفاعی، دوره 13، شماره 2، صص 63-85.
    • امینی، آرمین و انعامی علمداری، سهراب (1389)، مدیریت دانش و راهبرد نوآوری در سازمان‌های دفاعی، فصلنامه علوم سیاسی، دوره 10، شماره 1، صص 73-90.
    • آذر، عادل؛ غلامزاده، رسول و قنواتی، مهدی (1391)، مدل‌سازی مسیری- ساختاری در مدیریت: کاربرد نرم‌افزار Smart PLS، تهران: انتشارات نگاه دانش.
    • افجهء، سیدعلی اکبر و علیزاده­فر، زهرا (1396)، رابطه ادراک از برندکارفرما با نگرش­های شغلی کارکنان، فصلنامه علمی پژوهشی مطالعات مدیریت (بهبود و تحول)، سال 26، شماره 84 ، صص 73-95.
    • چهاردولی، عباس و نجاتی، مصطفی (1398)، راهبردهای توسعه مدیریت دانش در وزارت صنعت، معدن و تجارت (مطالعه موردی: سازمان صنعت، معدن و تجارت استان یزد)، مطالعات مدیریت راهبردی دفاع ملی، دوره 3، شماره 12، صص 273-306.
    • زاهدی، شمس­السادات؛ اسدپور، امین و حاجی نور، خاطره (1390)، رابطه سیبرنتیک و مدیریت دانش در سازمان، فصلنامه مطالعات مدیریت و بهبود، دوره 20، شماره 63، صص 1-25.
    • قاسمی‌نژاد، یاسر و فرامرزی، محمد، (1396)، شناسایی و اولویت‌بندی عوامل مؤثر بر ارزیابی عملکرد نظام مدیریت دانش (مطالعه موردی: یک دانشگاه دفاعی)، فصلنامه علمی راهبرد دفاعی، دوره 15، شماره 3، صص 163-190.
    • محمودزاده، ابراهیم و تقی­زاده بیرامی، غفور (1396)، ارزیابی ضرورت توسعه مدیریت دانش در بخش عمومی و دولتی ایران به مثابه تغییری راهبردی، مطالعات مدیریت راهبردی دفاع ملی، دوره 1، شماره 2، صص 141-161.
    • مدهوشی، مهرداد و حسین زاده اطاقسرا، سیدعلی اکبر (1388)، بررسی شاخص­های عملکرد مدیریت دانش و ارائه مدل اندازه­گیری، هفتمین کنفرانس بین­المللی مدیریت، تهران، گروه پژوهشی آریانا، صص 1-17.
    • مومنی، منصور و فعال قیومی، علی (1392). تحلیل آماری با استفاده از SPSS، تهران: مؤلف.
    • نوروزی رودپشتی، زهره؛ رفیعی رشت آبادی، فاطمه و مرادی، محمود (1397)، بررسی تاثیر و ارائه الگویی برای نقش تسهیم دانش خارجی و نشت دانش بر عملکرد نوآورانه شرکت، فصلنامه توسعه تکنولوژی صنعتی، دوره 16، شماره 31، صص 33-44.

    ب. منابع انگلیسی

    • Bartczak, S. (2002). Identifying barriers to knowledge management in the United States military. Americas Conference on Information Systems (AMCIS 2002), Proceedings, pp. 325-343.
    • Bartczak, S. E. (2004). Identifying the Benefits of Knowledge Management in the Department of Defense: A Delphi Study, 10th Americas Conference on Information Systems, August 6-8, AMCIS 2004, New York, NY, USA, pp. 579-597.
    • Brace, N., Kemp, R., & Snelgar, R. (2009). SPSS for Psychologists: A Guide to Data Analysis using SPSS for Windows. New York: Palgrave Macmillan.
    • Chang, C‐, Hsu, M-H., & Yen, C-H. (2012). Factors affecting knowledge management success: the fit perspective, Journal of Knowledge Management, 16(6), 847-861.
    • Chen, L., & Fong, P. S. W. (2015). Evaluation of KM performance: An organic approach. Information & Management, 52(4), 431-453.
    • Cheng Sheng, L., & Kuan Yew, W. (2015). Development and validation of KM performance measurement constructs for small and medium enterprises, Journal of Knowledge Management, 19(4), 711-734.
    • Chiu, C. M., Hsu, M. H. and Wang, E. T. G. (2006), Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories, Decision Support Systems, 42(3), 1872-1888.
    • Christopian, F. D. (2008). Organizational Culture as a Mediating Factor on Knowledge Management Systems in the Aerospace and Defense Industry, Thesis for the degree of Doctor of Philosophy in Organizational Leadership, Regent University, ProQuest Dissertations Publishing.
    • Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281-302.
    • Desouza, K. C., & Evaristo, J. R. (2006). Project management offices: A case of knowledge-based archetypes. International Journal of Information Management, 26(5), 414-423.
    • Desouza, K. C., & Vanapalli, G. K. (2005). Securing knowledge in organizations: lessons from the defense and intelligence sectors. International Journal of Information Management, 25(1), 85-98.
    • Digalwar, A. and Sangwan, K. S. (2011). Role of knowledge management in world class manufacturing: An empirical investigation. 2011 IEEE International Conference on Industrial Engineering and Engineering Management, 927-941.
    • Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error, Journal of marketing research, 18(1), 39-50.
    • Ghasemi, B., & Valmohammadi, C. (2018). Developing a measurement instrument of knowledge management implementation in the Iranian oil industry. Kybernetes, 47(10), 1874-1905.
    • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling. Thousand Oaks, CA: Sage.
    • Hamidizadeh, M.R & Fadaeinejad, M.E. (2010). A Knowledge Management Approach to Format the Financial World-Class Policies, International Journal of Management & Information Systems, 14(5). 69-78.
    • Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20.
    • Jafari, M., Akhavan, P., Rezaee Nour, J., & Fesharaki Mehdi, N. (2007). Knowledge management in Iran aerospace industries: a study on critical factors. Aircraft Engineering and Aerospace Technology, 79(4), 375-389.
    • Jafari, M., Rezaeenour, J., Akhavan, P., & Fesharaki Mehdi, N. (2010). Strategic knowledge management in aerospace industries: a case study. Aircraft Engineering and Aerospace Technology, 82(1), 60-74.
    • Jurčić, M., Lovrenčić, S., & Kurnoga, N. (2020). Croatian Defense Industry Competitiveness Cluster: Knowledge Management and Innovation Perspective. Business Systems Research Journal, 11(1), 59-72.
    • Kim, T. H., Lee, J.-N., Chun, J. U., & Benbasat, I. (2014). Understanding the effect of KM strategies on KM performance: A contingency perspective. Information & Management, 51(4), 398-416.
    • Kuah, C. T., & Wong, K. Y. (2011). KM performance measurement: a review. African Journal of Business Management, 5(15), 6021–6027.
    • Kwong‐Chi, L., & Kwai‐Sang, C. (2009). User‐satisfaction‐based KM performance measurement. International Journal of Quality & Reliability Management, 26(5), 449-468.
    • Lee, H. & Choi, B. (2003), Knowledge management enablers, processes, and organizational performance: an integrative view and empirical examination, Journal of Management Information Systems, 20(1), 179-228.
    • Lee, C. S. & Wong, K. Y. (2017), A Fuzzy Logic-Based Knowledge Management Performance Measurement System for SMEs, Cybernetics and Systems, 48(4), 277-302.
    • Man Yin Rebecca, Y., & Kit Fai, P. (2014). Measuring KM performance in industrial enterprises: An exploratory study based on an integrated model. The Learning Organization, 21(5), 310-332.
    • Oufkir, l. and Kassou, I. (2019). Performance measurement for knowledge management project: model development and empirical validation, Journal of Knowledge Management, 23 No. 7, pp. 1403-1428.
    • Roberts, M. R. & Whited, T. M. (2013). Endogeneity in empirical corporate finance, in: Constantin ides, G. M., Harris, M. and Stulz, R. M. (Eds.), Handbook of the Economics of Finance, Elsevier, Amsterdam, pp. 493–572.
    • Roh, T., & Seo, S. (2017). A Survey and Analysis of Defense Industry Quality Management Level for Advancement of Defense Quality Policy. Journal of Society of Korea Industrial and Systems Engineering, 40(3), 18–26.
    • Suk‐Gwon, C., & Jae‐Hyeon, A. (2005). Product and process knowledge in the performance‐oriented KM approach. Journal of Knowledge Management, 9(4), 114-132.
    • Wang, J., Ding, D., Liu, O., & Li, M. (2016). A synthetic method for KM performance evaluation based on triangular fuzzy number and group support systems. Applied Soft Computing, 39, 11-20.
    • Wei, C. C., Choy, C. S., & Yew, W. K. (2009). Is the Malaysian telecommunication industry ready for knowledge management implementation? Journal of Knowledge Management, 13(1), 69–87.