آینده‌ نگاری راهبرد‌های بازیگران کلیدی نفت خام با استفاده از رویکرد ترکیبی تحلیل ساختاری و روش مکتور

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه مدیریت و اقتصاد، دانشکده علوم انسانی و اجتماعی، دانشگاه جامع گلستان، گرگان، ایران

چکیده

هدف این مطالعه آینده‌نگاری راهبرد‌های بازیگران کلیدی نفت خام با استفاده از الگوی مکتور در افق 1410 ه.ش است. داده‌های این مقاله شامل 68 عامل است که با روش ترکیبی مصاحبه با نخبگان و روش دلفی به‌دست آمده‌است و طی دو مرحله عوامل اصلی مشخص، پالایش یا ترکیب شده‌اند. در نهایت نیز 40 عامل مشخص و از طریق پرسشنامه‌هایی، تأثیرات متقابل آنها جمع‌آوری و با نرم‌افزار میک‌مک داده‌ها تحلیل شده‌است. سرانجام 6 عامل به‌عنوان رویدادهای کلیدی و پیشران که بیشترین تأثیر را بر بهای آتی نفت خام دارند، شناسایی شد.  بر اساس خروجی‌های تحلیل ساختاری و نرم‌افزار میک‌مک، متغیرهای: سیاست انرژی ایالات متحده، دیپلماسی انرژی روسیه، رشد چین و هند، شکنندگی خاورمیانه و شمال آفریقا، همبستگی و انسجام اتحادیه اروپایی و قیمت نفت خام و نوسانات آن به‌عنوان متغیرهای کلیدی شناخته شده‌اند. نتایج روش مکتور نشان می‌دهد که ایالات متحده آمریکا در افق 1410، قدرتمندترین بازیگر نظام و اوپک کم‌تأثیرترین بازیگر به‌شمار می‌آید. اثرگذاری بازیگران مختلف و عدم توازن قدرت بین بازیگران مؤثر در عناصر کلیدی تعیین بهای آتی نفت خام از مواردی است که مدیریت صنعت نفت را به‌عنوان مدیریت سطح راهبردی با مشکل روبه‌رو می‌سازد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Foresight of Strategies for Key Actors of Crude Oil Using the Combination of Structural Analysis and MACTOR Method

نویسنده [English]

  • Eesa Niazi
Assistant professor in Department of Management, Faculty of Humanities and Social Sciences, Golestan University, Gorgan, Iran
چکیده [English]

The purpose of this study is to explore the strategies of key actors using the MACTOR model in the 1410s horizons. The data of this paper includes 68 factors, which are obtained by combining Elite interview and Delphi method. Finally, 40 specific factors were collected through questionnaires, their interactions, and analyzed with the micro-data software. Finally, six factors are identified as key events and impacts that have the most impact on future crude oil prices. Based on the outcomes of structural analysis and MICMAC software, the variables are US energy policy, Russia's energy diplomacy, China and India's growth, Middle East and North Africa fragmentation, European Union solidarity and crude oil price, and its fluctuations as key variables. The results of the MACTOR method show that the United States is considered to be the most influential player on the horizon of 1410, the most powerful actor in the system and OPEC. And it has most of the key variables. The impact of different actors and the imbalance between elected actors in the key elements of future crude oil futures is one of the issues that threatens the management of the oil industry as strategic level management.
 

کلیدواژه‌ها [English]

  • Foresight
  • Key Actors
  • MICMAC
  • MACTOR
  • الف. منابع فارسی

    • بهشتی، محمدباقر و زالی، نادر (1390)، شناسایی عوامل کلیدی توسعه منطقه‌ای با رویکرد برنامه‌ریزی بر پایه سناریو، مطالعه موردی: استان آذربایجان شرقی، فصلنامه برنامه‌ریزی و آمایش فضا (مدرس علوم انسانی). 15(1).
    • زالی، نادر (1388)، آینده‌نگاری توسعه منطقه‌ای با رویکرد برنامه‌ریزی سناریومبنا (نمونه موردی: استان آذربایجان شرقی)، دانشکده علوم انسانی و اجتماعی، دانشگاه تبریز.
    • زارع‌ میرک‌آباد، علی (1395)، ارائه یک ابر روش برای توسعه سناریو مبتنی بر دیدگاه‌ها (مطالعه موردی: صنعت هوایی ایران در افق 1404)، پایان‌نامة دکترا، دانشکده مدیریت، دانشگاه تهران.
    • شوارتز، پیتر (1387)، هنر دورنگری: برنامه‌ریزی برای آینده در دنیایی با عدم قطعیت (ترجمه عزیز علیزاده). تهران: مؤسسه آموزشی و تحقیقاتی صنایع دفاعی.
    • علیزاده، علی؛ وحیدی مطلق، وحید؛ امیر ناظمی (1389)، سناریونگاری یا برنامه‌ریزی بر پایه سناریوها، تهران: مؤسسه مطالعات بین‌المللی انرژی.

     

    ب. منابع انگلیسی

    • Aloui, C., Jammazi, R.(2009). The Effects of Crude Oil Shocks on Stock Market Shifts Behavior: A Regimes Witching Approach. Energy Economics 31(5), pp.789–799.
    • Aloui, C., Jammazy, R., Dhakhlaoui, I. (2008). “Crude Oil Volatility and Stock Market Returns”. Journal of Energy Markets 1, pp.69–96.
    • Ansoff, I. (1975). Managing strategic surprise by response to weak signals. California Management Review, 18 (2), 21-33. Retrieved from
    • Bell, W.,(1997). Foundations of Futures Studies: Human science for a new era, vol. 1: History, purposes and knowledge, Third printing 2000 ed, Transaction Publishers, New Brunswick NJ.
    • Bishop, P; Hines, A; Collins, T; (2007). The current state of scenario development: an overview of techniques; foresight; VOL. 9 NO. 1 2007, pp. 5-25
    • Borjeson, L. Ho jer, M. Dreborg, K. Ekvall, T. and Finnveden, G. (2006). Scenario types and techniques: towards a user’s guide, Futures.
    • Bradfield, R. Wright, G. Burt, G. Cairns, G. and Van Der Heijden, K. (2005). The origins and evolution of scenario techniques in long range business planning, Futures, Vol. 37, pp. 795-812.
    • Cologni, A., Manera, M., (2009). The Asymmetric Effects of Oil Shocks on Output Growth: a Markov-Switching Analysis for G7 Countries. Economic Modelling 26, 1–29.
    • Dewar, J. A. (2002). Assumption-based planning: A tool for reducing avoidable surprises. Cambridge UK: Cambridge Press.
    • Liam,F ; Randall,R,M (1998). Learning form the Future; Competitive Foresight Scenarios; New York: John Wiley and Sons.
    • Godet, M. (2006). Creating Futures: Scenario Planning as a Strategic Management Tool, France, Economica publish.
    • Godet, M. Roubelat, F. (1996): Creating the future: The use and misuse of scenarios, in: Long Range Planning, Vol. 29, No.2, 1996
    • Inayatullah, S, (1990). Deconstructing and reconstructing the future: predictive, cultural and critical epistemologies, Futures 22 (2) (1990) 115–141٫
    • Klir, G. ; Wierman, M. (1999). Uncertainty-based information: Elements of generalized information theory (2nd ed). Heidelberg: Physica-Verlag.
    • Mannermaa, M. Futures research and social decision making: alternative futures as a case study, Futures 18 (5) (1986) 658–670٫
    • Marien, M., Futures studies in the 21st Century: a reality based view, Futures 34 (3–4) (2002) 261–281٫
    • Millett, S. (2003). The future of scenarios: challenges and opportunities, Strategy & Leadership, Vol. 31 2, pp. 16-24.
    • Millett, S.(2003). The future of scenarios: challenges and opportunities, Strategy and Leadership 32 (2) 16–24٫
    • Milliken, F. J. (1987). Three types of perceived uncertainty about the environment: State, effect, and response uncertainty. The Academy of Management Review, 12 (1), 133-143. Retrieved from http://www.jstor.org/stable/257999
    • Moyer, K.(1996). Scenario planning at British Airways – a case study, Long Range Planning 29 (1996) 172–181٫
    • Porter, M (1985); Competitive Advantage; New York: The Free Press.
    • Reibstein, D. J. & Chussil, M. J. (2004). Putting the lesson before the test: Using simulation to analyze and develop competitive strategies, in G.S. Day & D. J. Reibstein (eds.), Wharton on competitive strategy (pp. 395-425). New York: John Wiley & Sons.
    • Schwartz, P. (1991). The Art of the Long View, Doubleday/Currency, New York, NY.
    • Schwartz, P. (1991). The Art of The Long View: Planning for the Future in an Uncertain World. New York: Currency Doubleday.
    • Van Notten, P. Rotmans, J. van Asselt, M. and Rothman, D. (2003). An updated scenario typology, Futures, Vol. 35, pp. 423-43.
    • Van Notten, P.W.F., J. Rotmans, M.B.A. van Asselt, D.S. Rothman(2003). An updated scenario typology, Futures 35 (5) (2003) 423–443
    • Varum, C; Melo, C (2010). Directions in scenario planning literature – A review of the past decades, Futures, 42 (2010) 355–369
    • Wang, J .,.Zhu, S. , Zhao, W.,&Wen,J. (2011). Optimal parameters estimation and inputsubset for grey model based on chaotic particle swarm optimization algorithm, .Expert system with Applications, 38: 8151-8158.
    • Weimer-Jehle, W. (2006). Cross impact (CIB), science direct, Technological forecasting& social change, vol 73, pp334-361.
    • Weimer-Jehle, W. (2008). Cross-impact balances, Applying pair interaction systems and multi-value Kauffman nets to multidisciplinary systems analysis” science direct, Phisica A , 387 , PP3689-3700.
    • Weimer-Jehle, W. (2008). Scenario wizard Basic2.3, Manual, university of Stuttgart.
    • William J. F. (2007). Screening the Brighter Tomorrow Urban Utopias in Contemporary Cinema, International making cities livable conference, Portland: Oregan.
    • Wolfgang, W.J. & Weimer, T. (2006). Cross Impact Balance (CIB), Science Direct, Technological Forecasting & Social Change, Vol. 73.
    • Ye M,, Zyren J,, Shore J, (2005). A monthly crude oil spot price forecasting model using relative inventories, International Journal of Forecasting, vol 21, pp 491– 501.