Performance evaluation of Persian News Agency on the Twitter using a combination of Data mining, analytical network analysis (ANP) and data envelopment analysis (DEA)

Document Type : Original Article

Authors

1 K.N.TOOSI university of technology, Department of industrial engineering,. Tehran, Iran.

2 . Assistant professor of biomedical engineering, Supreme National Defense University, Logistic and defense technology institute, cognitive science and technology think thank, Tehran, Iran

3 . Amirkabir university of technology, Department of computer, Tehran, Iran

4 Member of the faculty of Institute for humanities and cultural studies, Tehran, Iran

Abstract

The irreplaceable role of social networks in human life is undeniable and many people nowadays follow the news through social networks. That's why news media have expanded their coverage through social networks such as Twitter. Evaluating the performance of news agencies on social networks can help them to improve their performance and ultimately attract the audience. In fact, evaluating news techniques to attract the audience and guide public opinion in the desired direction of the media is one of the most important aims of media policy makers. To this end, it seems necessary to provide new and efficient methods for quantitative and qualitative evaluation of the performance of news media. In this research, a three-step method is proposed. In the first stage, the criteria and sub-criteria were ranked using network analysis method. The results of these two steps are used in the data envelopment analysis method and efficient media are identified. The efficient media are then ranked using the Andson-Peterson method. This method was tested on 15 Persian- news networks on Twitter, and the most popular Persian media were ranked. The results indicated that the model used is a suitable and efficient model for evaluating and ranking Persian news networks. Al-Arabiya Farsi, Deutsche Welle Farsi and The Indypersian were selected as the most efficient medias, respectively. The results obtained in comparison by similar researches and the opinion of experts indicated that the proposed model is a suitable and efficient model for evaluating and ranking Persian news agencies.
 

Keywords


  1. الف. منابع فارسی

    • احمدی، علی (1397)، بازتاب اخبار فعالیت‎ها‎ی هسته‌ای جمهوری اسلامی ایران در شبکه‎ها‎ی خبری بین المللی، پایان نامه کارشناسی ازشد، علوم ارتباطات اجتماعی، تهران: دانشگاه علامه طباطبایی.
    • احمدی، علی؛ عسگرزاده، محسن؛ مفیدی، ریحانه؛ (1400)، مقایسه تطبیقی پوشش خبری بحران کرونا در شبکه خبر و بی بی سی فارسی، فصلنامه علمی رسانه‎های دیداری و شنیداری. شماره 1: 162-133.
    • فرهنگی، علی اکبر؛ سام بند، میثم؛ صالحی قدیانی؛ قائدی، محمدرضا (1399)، قدرت بازدارندگی رسانه­ا­ی تلویزیون و کاربست دفاعی آن؛ با تأکید بر توانمندسازی فردی، نشریه سیاست دفاعی. شماره 113: 84-53.
    • بنا درخشان، مامک (1389)، بررسی مقایسه‌ای پوشش خبری بحران یمن در سایت‎ها‎ی شبکه‎ها‎ی خبری تلویزیونی العالم، العربیه و سی ان ان در سه ماهه آخر سال 2009 میلادی، پایان نامه کارشناسی ارشد، علوم ارتباطات اجتماعی، تهران، دانشگاه صداوسیما.
    • فلحمیده، مصطفی (1389)، تحلیل بخش‎ها‎ی خبری شامگاهی شبکه العربیه در ارتباط با پرونده هسته‌ای ایران در سه ماهه آخر 2009، پایان نامه کارشناسی ارشد، علوم ارتباطات اجتماعی تهران، دانشگاه صداوسیما.
    • متفکر، حسین (1386)، جنگ روانی، قم، دفتر عقل پژوهشکده تحقیقات اسلامی سپاه، 1386، ص18.
    • نصری، سید امیر؛ حسن پور، حسین؛ (1401)، شناسایی و تکنیک‌های جنگ روانی با استفاده از روش ترکیبی دلفی فازی و تحلیل شبکه‌ای.فصلنامه آماد و فناوری دفاعی 5(4), 177-208.

     

    ب. منابع انگلیسی

    • Farrell, M. J. (1950). The measurement of productive efficiency, Journal of the Royal Statistical Society. Series A (General), 121, 231-253.
    • Herman, E. S., & Chomsky, N. (1988). MANUFACTURING CONSENT, The Political Economy of the Mass Media. New York: Pantheon Books
    • Herring, E.، & Robinson, P. (2003b). Too Polemical or too Critical? Chomsky on the Study of the News Media and US Foreign Policy, Review of International Studies, 29(4), 553 – 568.
    • Sparks, C. (2007). Extending and Refining the Propaganda Model, Westminster Papers in Communication and Culture, 4(2), 114-137
    • Zamparas.V, Kanavos, A. C. )2015(.Real Time Analytics for Measuring User Influence on Twitter, IEEE 27th International Conference on Tools with Artificial Intelligenc
    • Riquelme.F, González-Cantergiani.P, (2016) “Measuring user influence on Twitter: A survey”, Information Processing and Management, 52, 949–975.
    • J, (2018). A new geography of defense”: “The birth of psychological warfare, Political Geography, 67, 32–45
    • Linstone, A. and Turo, M., (2002). The Delphi Method Techniques and Applications, Online Avaliable:www.inei.org.br/inovateca/estudos-e-pesquisas-eminovacao/Delphibook.pdf
    • Saaty, T.L. (2004). Fundamentals of the analytic network process — Dependence and feedback in decision-making with a single network, Journal of Systems Science and Systems Engineering, 13, 129–157.
      1. Sheikhahmadi, M.A. Nematbakhsh, A. Zareie, (2017). Identification of influential users by neighbors in online social networks, Physica A, 486, 517-534
    • Ma, Y. Liu, Y. Chi, (2018). Influencer discovery algorithm in a multi-relational network, Physica A, 510, 415-425
    • A, Mori. P, Guidi B, Ricci L, Pietro. (2021). Predicting Influential Users in Online Social Network Groups. ACM Trans. Knowl. Discov. Data, 15(35), 1-50.
    • Harrigan, P, Daly, T, Coussement, K, Lee, J, Soutar, G, Evers, U, (2021). Identifying influencers on social media, International Journal of Information Management, 56, 102246.
    • Mittal, D., Suthar, P., Patil, M., Pranaya. P., Rana, Tidke, B., (2020). Social influencer rank recommender using diverse features from topical graph, Procedia Computer Science, 167, 1861–1871
    • Arora, A., Bansal, S., Kandpal, C., Aswani, R., Dwivedi, Y., (2019). Measuring social media influencer index- insights from facebook, Twitter and Instagram, Journal of Retailing and Consumer Services, 49.86–101
    • Hu, J., Du, Y., Mo., H., Wei, D., Deng, Y. (2015). A modified weighted TOPSIS to identify influential nodes in complex networks, Physica A, 444. 73-85.
    • Mohamaddousta, R., Mohammadzadeh, J., Khaliliana, M., Nikravanshalmani, A., (2021). Measuring and analyzing charisma on twitter using combination weighting and TOPSIS method, J.Nonlinear Anal. Appl, 12, 1143-1158
    • Fraser, K & Hvolby, H. H (2012). Effective teamworking: can functional flexibility act as an enhancing factor? An Australian case study, Team Performance Management: An International Journal, 16, 112-131.
    • Sharafi, H., Lotfi, F., Jahanshahloo, G., Rostami, M., Soltaifar, M., Razipour (2019). Ranking of petrochemical companies using preferential voting at unequal levels of voting power through data envelopment analysis, Mathematical science, 13, 287-297.
    • Nasri, S.A., Ehsani, B., Hosseininezhad, S.J. et al.A sustainable supplier selection method using integrated Fuzzy DEMATEL–ANP–DEA approach (case study: Petroleum Industry). Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02590-2
    • Safaie, N., & Nasri, S. A. (2022). Failure Mode and Effect Analysis using Robust Data Envelopment Analysis (Case Study: Automobile Oil Filter). Journal of Optimization in Industrial Engineering, 15(2), 1-19.
    • Seyed Amir Nasri, Nasser Safaie, AmirHossein Sarabi, Ali Eghbali, Gholamreza Barkhordari, "Performance Evaluation of ICT Companies Using Hybrid MCDM Method in Iran", Mathematical Problems in Engineering, 2022, Article ID 5308343, 13 pages, 2022. https://doi.org/10.1155/2022/5308343